32,034 research outputs found

    Gamma-ray spectroscopy: The diffuse galactic glow

    Get PDF
    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data

    Properties of GRB Host Galaxies

    Get PDF
    The transients following GRB970228 and GRB970508 showed that these (and probably all) GRBs are cosmological. However, the host galaxies expected to be associated with these and other bursts are largely absent, indicating that either bursts are further than expected or the host galaxies are underluminous. This apparent discrepancy does not invalidate the cosmological hypothesis, but instead host galaxy observations can test more sophisticated models.Comment: 5 pages, AIPPROC LaTeX, to appear in "Gamma-Ray Bursts, 4th Huntsville Symposium," eds. C. Meegan, R. Preece and T. Koshu

    Community Change for Youth Development in Kansas City

    Get PDF
    Kansas City, Missouri, is one of six sites in Community Change for Youth Development (CCYD), a national demonstration project aiming to increase basic supports and opportunities available to youth aged 12-20. The lead agency is the YMCA of Greater Kansas City; because of its considerable organizational capacity and relationship with funders, the YMCA was successful in operating and expanding CCYD. This report focuses on the benefits of working with the YMCA of Greater Kansas City and the challenges faced by the organization in leading a community-based initiative in three urban neighborhoods

    Search for Supergalactic Anisotropies in the 3B Catalog

    Get PDF
    The angular distribution of GRBs is isotropic, while the brightness distribution of bursts shows a reduced number of faint events. These observations favor a cosmological burst origin. If GRBs are indeed at cosmological distances and if they trace luminous matter, we must eventually find an anisotropic distribution of bright bursts. If a significant number of bursts originate at redshifts less than z~1, the concentration of nearby galaxies towards the supergalactic plane is pronounced enough that we could discover the corresponding clustering of burst locations. We used the 3B catalog to search for a pattern visible in supergalactic coordinates. No compelling evidence for anisotropies was found. The absence of anisotropies in SG coordinates implies a minimum sampling distance of 200h^-1 Mpc.Comment: 5 pages, uuencoded postscript, to appear in the Proceedings of the Huntsville Conference on Gamma Ray Burst

    A BeppoSAX observation of the supersoft source 1E 0035.4-7230

    Get PDF
    Results from a 37,000 s BeppoSAX Low-Energy Concentrator Spectrometer (LECS) observation of the supersoft source SMC 13 (=1E 0035.4-7230) in the Small Magellanic Cloud are reported. The BeppoSAX spectrum is fitted either with a blackbody spectrum with an effective temperature kT = 26-58 eV, an LTE white dwarf atmosphere spectrum with kT = 35-50 eV, or a non-LTE white dwarf atmosphere spectrum with kT = 25-32 eV. The bolometric luminosity is < 8 10^37 erg s-1 and < 3 10^37 erg s^-1 for the LTE and the non-LTE spectrum. We also applied a spectral fit to combined spectra obtained with BeppoSAX LECS and with ROSAT PSPC. The kT derived for the non-LTE spectrum is 27-29 eV, the bolometric luminosity is 1.1-1.2 10^37 erg s^-1. We can exclude any spectrally hard component with a luminosity > 2 10^35 erg s^-1 (for a bremmstrahlung with a temperature of 0.5 keV) at a distance of 60 kpc. The LTE temperature is therefore in the range 5.5+/-0.2 10^5 K and the non-LTE temperature in the range 3.25+/-0.16 10^5 K. Assuming the source is on the stability line for atmospheric nuclear burning, we constrain the white dwarf mass from the LTE and the non-LTE fit to ~1.1 M-solar and ~0.9 M-solar respectively. However, the temperature and luminosity derived with the non-LTE model for 1E 0035.4-7230 is consistent with a lower mass M~0.6-0.7 M-solar white dwarf as predicted by Sion and Starrfield (1994). At the moment, neither of these two alternatives for the white dwarf mass can be excluded.Comment: 6 pages, accepted by A&A March 30th 199

    Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts

    Get PDF
    While many models have been proposed for GRBs, those currently favored are all based upon the formation of and/or rapid accretion into stellar mass black holes. We present population synthesis calculations of these models using a Monte Carlo approach in which the many uncertain parameters intrinsic to such calculations are varied. We estimate the event rate for each class of model as well as the propagation distance for those having significant delay between formation and burst production, i.e., double neutron star (DNS) mergers and black hole-neutron star (BH/NS) mergers. For reasonable assumptions regarding the many uncertainties in population synthesis, we calculate a daily event rate in the universe for i) merging neutron stars: ~100/day; ii) neutron-star black hole mergers: ~450/day; iii) collapsars: ~10,000/day; iv) helium star black hole mergers: ~1000/day; and v) white dwarf black hole mergers: ~20/day. The range of uncertainty in these numbers however, is very large, typically two to three orders of magnitude. These rates must additionally be multiplied by any relevant beaming factor and sampling fraction (if the entire universal set of models is not being observed). Depending upon the mass of the host galaxy, half of the DNS and BH/NS mergers will happen within 60kpc (for a Milky-Way massed galaxy) to 5Mpc (for a galaxy with negligible mass) from the galactic center. Because of the delay time, neutron star and black hole mergers will happen at a redshift 0.5 to 0.8 times that of the other classes of models. Information is still lacking regarding the hosts of short hard bursts, but we suggest that they are due to DNS and BH/NS mergers and thus will ultimately be determined to lie outside of galaxies and at a closer mean distance than long complex bursts (which we attribute to collapsars).Comment: 57 pages total, 23 figures, submitted by Ap

    Monopoles and dyons in SO(3) gauged Skyrme models

    Get PDF
    Three dimensional SO(3) gauged Skyrme models characterised by specific potentials imposing special asymptotic values on the chiral field are considered. These models are shown to support finite energy solutions with nonvanishing magnetic and electrix flux, whose energies are bounded from below by two distinct charges - the magnetic (monopole) charge and a non-integer version of the Baryon charge. Unit magnetic charge solutions are constructed numerically and their properties characterised by the chosen asymptotics and the Skyrme coupling are studied. For a particular value of the chosen asymptotics, charge-2 axially symmetric solutions are also constructed and the attractive nature of the like-monopoles of this system are exhibited. As an indication towards the possible existence of large clumps of monopoles, some consideration is given to axially symmetric monopoles of charges-2,3,4.Comment: 15 pages, 4 Postscript figure

    Symmetries and Triplet Dispersion in a Modified Shastry-Sutherland Model for SrCu_2(BO_3)_2

    Full text link
    We investigate the one-triplet dispersion in a modified Shastry-Sutherland Model for SrCu_2(BO_3)_2 by means of a series expansion about the limit of strong dimerization. Our perturbative method is based on a continuous unitary transformation that maps the original Hamiltonian to an effective, energy quanta conserving block diagonal Hamiltonian H_{eff}. The dispersion splits into two branches which are nearly degenerated. We analyse the symmetries of the model and show that space group operations are necessary to explain the degeneracy of the dispersion at k=0 and at the border of the magnetic Brillouin zone. Moreover, we investigate the behaviour of the dispersion for small |k| and compare our results to INS data.Comment: 9 pages, 8 figures accepted by J. Phys.: Condens. Matte
    corecore